
Escalante: An Environment for the Rapid

Construction of Visual Language Applications

Je�rey D. McWhirter and Gary J. Nutt

CU-CS-692-93 December 1993

�

University of Colorado at Boulder

Technical Report CU-CS-692-93

Department of Computer Science

Campus Box 430

University of Colorado

Boulder, Colorado 80309



Escalante: An Environment for the Rapid

Construction of Visual Language Applications

Je�rey D. McWhirter and Gary J. Nutt

December 1993



Abstract

Escalante is an environment that supports the iterative design, rapid prototyp-

ing and automatic generation of complex visual language applications with a modest

amount of e�ort. It enables the application developer to specify the application and its

interface by de�ning its data model and the corresponding visualization model (using

a visual speci�cation environment). The data models are general graph models, while

the visualization models are relatively unconstrained graphics; this enables the user in-

terfaces to represent a broad set of presentations and views while adhering to a general

framework in which well-de�ned behavior can be easily speci�ed. Once the data and

visualization model have been de�ned, Escalante will generate a program that imple-

ments the data model and the viewing mechanism using a �xed control mechanism;

the resulting program can be enhanced to incorporate arbitrary application software.

The approach enables a surprising range of interfaces to �t within the meta model;

the paper characterizes the spectrum of the domain by describing di�erent example

applications (including some quanti�cation of the e�ort required to construct each

example).



1 Introduction

Graphical user interfaces are a key component of many modern computer applications. The

graphical representation of the state of an application and the ability to manipulate that

state through its representation has the potential to greatly facilitate human computer com-

munication. Visual language applications (or environments) are speci�cally dependent on

this type of user/application interaction. Using a visual language application one constructs

and manipulates a visual program which is based on the constructs and properties de�ned

by a visual language. In these systems the state of the application is tightly coupled with its

representation, blurring the distinction between application and interface. Visual language

applications serve to facilitate human computer communication in many areas including

simulation, modeling, visual programming, software engineering, educational systems and

network design (e.g., [1]).

Figure 1 shows a screen snapshot of an example system built using Escalante. This

application, BooleanCircuit, supports the construction and direct manipulation of boolean

logic circuits and is based on a visual language composed of AndGate, OrGate, NotGate,

OnO� and Connection elements. Changes to the input of a circuit are made directly through

the OnO� nodes. These changes are propagated through the circuit with the gates applying

their respective boolean operations. We will use this example throughout the paper to

illustrate the process of creating applications with Escalante.

The speci�c problem Escalante addresses is the development e�ort to implement a visual

language application. Traditionally, software support for the development of user interfaces

focuses on how the user interacts with the interface rather than on what the user acts. There

are increasing e�orts to address issues concerning the what of applications, ranging from the

very general (e.g., HUMANOID [11], UIDE [10]) to the more focused (e.g., Unidraw [12])

to the very speci�c (e.g., Edge [8]). There exists a tradeo� between the overall applicability

of an environment and the degree of support provided by the environment for a particular

application. The more general approaches are applicable to a broad range of applications but

the degree of support o�ered to a developer for a particular application is limited. The more

restricted approaches can greatly facilitate the development of certain types of applications

Figure 1: Boolean Circuit Application

1



(a)

(b) (c) (d) (e) (f)

Figure 2: Graph Model Representations

but their domain is limited. Current software technologies do not provide the level of domain

speci�c support required to rapidly construct highly functional applications for a broad range

of visual languages. Our approach is to focus on applications for graph model based visual

languages, providing an environment that allows a system developer to rapidly construct

applications with a minimal amount of programming.

In the following sections we discuss the class of systems we address and the problems these

systems pose to the application developer. We then give an overview of Escalante, describing

its component architecture and the language speci�cation environmentGrandView. Related

e�orts in this area are then discussed. The results of this work are presented through the

description of a set of applications that have been built using Escalante.

2 Visual Language Applications

Escalante supports building applications for visual languages that are based on object-

relationship abstractions (e.g., nodes and edges). We de�ne languages such as these to

be graph model based. The characterization of the domain as graph models re
ects the form

of the underlying language constructs, not any particular representation of those constructs

such as circles and arrows. For example, Figure 2 shows six di�erent representations of

the same underlying graph model constructs. As seen in this �gure, graph models can be

represented in many di�erent ways (e.g., textual list, directed graph, containment, spanning

hierarchy, adjacency matrix and adjacency list).

The constructs that make up visual languages and the uses those visual languages are

put to ranges from the simple to the complex. For example, Figure 3 shows a set of visual

languages, including a data
ow language (DFlow), a Turing Machine simulation language

and a water 
ow simulation language (Waterworks). As seen in this �gure, visual languages

can be made up of complex language constructs that exhibit complicated and dynamic

graphical representations, spatial relationships, complex behavior, etc.

2



(a) DFlow (b) Turing Machine (c) Waterworks

Figure 3: Example Visual Languages

The complexity of a visual language application varies with the syntax and semantics

of its associated language. The functionality embodied by these systems may range from

simple editing tasks to generation of external artifacts (e.g., code generation) to complex

and dynamic simulations. The use of a visual language within an application introduces

a wide range of issues that have to be addressed. A visual program is not a static entity.

The user interacts with the application, creating, deleting, moving, and copying elements of

the visual program. A visual language application may also make use of multiple language

representations, multiple windows, visual abstractions, etc. These factors of language and

application complexity are addressed in the development e�ort using Escalante.

2.1 Developing Visual Language Applications

The development of a visual language application is a di�cult task. A recent study points

out that, on average, approximately �fty percent of the implementation e�ort for a wide

variety of applications was devoted towards the user interface [7]. This observation may be

conservative for visual language applications. The highly graphical and interactive nature of

these applications tends to place emphasis on the interface, blurring the distinction between

the application and the interface.

The e�ort required to implement a visual language application impedes the entire process

of language and application development. Iterative design and prototyping of the evolving

language and application is a di�cult task. The development e�ort interferes with the ability

to re�ne the language and application in order to provide a good �t between the problem

domain, language, application and user. The investment of time required to implement an

application can a�ect the overall usability and usefulness of the application and may even

preclude application development.

The goal of Escalante is to provide a high level of support to the developer of a visual lan-

guage application and to enable rapid application development with minimal programming.

Our approach is to provide a rich substrate that is applicable to a broad range of visual

language applications and provides deep system support for those applications, including

3



Programmed

Generated

Predefined

Programmed

Generated

Predefined

Editor ModuleLanguage Module

(a) GrandView Specification Environment (b) Target Application Architecture

Figure 4: Escalante Architecture

the underlying application data model, representation of the data model and an extensive

editing component. A visual speci�cation environment facilitates the development process

by allowing the application developer to focus on the de�nition of the target visual language

and to ignore many of the implementation details and complexities of the system substrate.

Using Escalante, the developer can explore new language constructs, representations and

behaviors. Escalante allows the developer to expand the range of potential language and

application features in order to create usable and useful applications.

3 Escalante

The development of Escalante has been guided by a conceptual language characterization

framework [6] which provides a cohesive and general way in which to describe the constructs

and characteristics of a diverse set of visual languages. The ability of this framework to

describe the constructs and properties of visual languages is crucial for providing coverage

for both the breadth and the depth of the domain. Space constraints limit our ability to

explain all of the aspects of Escalante and its potential uses. In [5] we provide a detailed

description of Escalante and the process of creating applications with it.

3.1 System Architecture

Escalante consists of three components: base language module, base editor module and

the GrandView speci�cation environment. Figure 4 shows the development process and a

conceptual view of the target application architecture. Applications built using Escalante

are composed of a language module and an editor module. The language module contains

most of the language speci�c functionality required within an application, encapsulating the

application data model and the representation of the data model. The editor module is the

interface between the user and the underlying language module, providing to the user the

ability to create, inspect and manipulate a visual program.

4



The language and editor modules are made up of a prede�ned base component coupled

with generated and programmed language speci�c components. The prede�ned components

encapsulate general functionality and behavior of visual language applications. The gener-

ated components are created through the GrandView environment and encapsulate language

speci�c functionality. There are �xed interactions de�ned between the prede�ned language

and editor modules. For future reuse of the language module we have limited its functional

dependencies on the editor module. The programmed components of the language and editor

modules are created manually by the developer and are used to modify or extend system

capabilities and functionality that are not provided by the prede�ned and generated com-

ponents. It has been our observation that non-trivial visual language applications can be

created with minimal manual programming. The manual programming required typically

involves the implementation of language speci�c functionality (i.e., language semantics). For

example, the programmed component of the BooleanCircuit application in Figure 1 involved

implementing the semantics of the boolean operations of the Gate elements.

3.2 Language Module

In Escalante a visual language is not simply a set of graphical marks or images, rather, it

is made up of a set of constructs that exhibit certain properties (including graphical im-

ages). To provide explicit support for a diverse set of language constructs and properties

we make the distinction between the constructs and the characteristics of those constructs.

Language constructs are generalized into a simpler form - entities and relations. This gener-

alization re
ects the characterization we have made of graph models as object-relationship

abstractions.

An entity represents a thing within a language (e.g., node, graph, subgraph, aggregation).

A relation concretely de�nes some relationship (e.g., edge, member of a graph, containment)

between two entities, termed the tail and head. We use the entity/relation characterization

as a means to make explicit the possibly implicit or abstract, constructs and relationships

that occur within visual languages.

To provide support for the behavioral mechanisms of visual languages we have generalized

the functionality and behavior one encounters in speci�c visual languages and applications

and encapsulated this functionality as general mechanisms in the entity/relation constructs.

These mechanisms include propagation of �xed events (e.g., deletion, movement), propaga-

tion of functions, propagation of attribute values, visual dependencies and spatial constraints.

The actual implementation of the language module is based on a collection of static classes

organized as an inheritance hierarchy. A visual program is a collection of objects instantiated

from these classes. Figure 5 shows the classes which make up the prede�ned component and

a set of generated classes that make up the constructs used in the BooleanCircuit application.

There are three groups of prede�ned classes: visual elements, structural elements and graphic

primitives.

The GraphObject class implements an attribute value mapping mechanism which is used

to propagate attribute values from one object (source) to the attributes of other objects

5



Graph

Object

Visual

Element

Visual

Relation

Connection

Visual

Entity

BaseElement

Gate

(NotGate, OrGate,AndGate)

OnO�

Structural

Element

Structural Relation

Structural Entity

Graphic

Primitives

Oval, Bitmap, Button, ...

Figure 5: Language Hierarchy

(targets). One can place any number of attribute �lters between the source and the target

that allow for the modi�cation of the values and the control of the attribute mapping process.

The visual element classes, in conjunction with the graphic primitives, encapsulate the

state and functionality related to representing, selecting and manipulating language con-

structs on the screen. The actual image of a visual element is derived from instances of the

graphic primitive classes. The VisualRelation class provides the ability to de�ne location

constraints which allow one to de�ne spatial constraints such as containment and adjacency.

The structural element classes have no visual representation, rather they provide a means

to create applications that consist of more than one visual representation of some common

set of language constructs. A structural element serves to connect or group a set of visual

elements. For example, each of the representations shown in Figure 2 are a part of the same

application. Each visual element in one particular representation is related to other visual

elements in the other representations through a common structural element.

The graphic primitives are used to de�ne the actual representation of a visual element.

This set of classes includes simple graphical images such as bitmap, line and rectangle;

classes that allow one to group and layout collections of graphic images; and widget graphics

such as �elds, buttons, text views, and menus that allow for direct user input to a visual

element. The attribute mapping mechanism is used to de�ne mappings between attribute

values within a visual element and attributes of the graphics objects which form the image

of the element. These graphical attributes include color, text value, pen width, menu entry,

button state, etc. Mapping attributes between a visual element and the objects that make

up the representation of the element allows for directly manipulating the internal state of the

element through its representation as well as providing a means to automatically represent

the internal state of the element.

3.3 Editor Module

The main construct of the prede�ned editor component is the EscalanteView class. This

construct encapsulates a wide range of visual program editing capabilities including: the

creation, deletion, and copying of language elements; graphical editing capabilities such

6



(a)

(d)(c)

(b)

Figure 6: GrandView Language Speci�cation Environment

as moving, resizing, scaling, alignment and simple layout; and grouping and manipulat-

ing groups of elements. There is a framework provided for creating online help. N-level

undo/redo of element creation, deletion and movement is supported. One can copy/paste

and export/import components of a graph. Very 
exible mechanisms also exist for multiple

views, viewing subgraphs and �ltering out the display and selection of elements. The gener-

ated editor module is a template class, derived from the EscalanteView, that can be tailored

to �t the particular needs of an application. Methods de�ned in the EscalanteView can be

overwritten in order to modify or extend the prede�ned functionality.

3.4 GrandView

The principal tool used to create a visual language application is GrandView and its as-

sociated visual language Grand. Referring to Figure 4a, the developer uses GrandView to

de�ne the constructs and characteristics of a target visual language. Since Grand is a visual

language, this speci�cation process is itself an instance of visual (meta) programming. The

language speci�c modules of an application are generated from the speci�cation. Language

or application semantics not supported by GrandView can be added to the generated lan-

guage and editor modules. The generated and programmed components are compiled and

linked with the prede�ned modules to realize the �nal system. For applications that do not

require manual programming the generation process and �nal system construction is handled

automatically. Once the speci�cation is complete a working application can be realized in a

matter of minutes.

Users interact with GrandView through di�erent views of a language speci�cation. The

fundamental views within GrandView are the Class View and the Prototype View. Grand-

View supports other views of the Grand speci�cation, depending on the aspect of the spec-

i�cation on which the developer focuses at any given time. Figure 4a shows the Class and

7



Prototype Views of the BooleanCircuit speci�cation. Figure 6 shows a set of other views of

this speci�cation.

Class View In the Class View a set of class speci�cation elements are used to de�ne the

target language classes. The Child Of relation is used to construct an inheritance hierarchy

of these elements. In Figure 4a we see the speci�cation of the language classes that make

up the BooleanCircuit example. The BaseElement class is derived, by default, from the

Visual Entity class. The Gate and OnO� classes are derived from the BaseElement class.

The AndGate, OrGate, and NotGate are subclasses of Gate. The Connection class is derived

from the Visual Relation class.

Prototype View A prototype approximates the behavior of a speci�ed language construct.

Prototypes di�er from the actual implementation of the generated language construct in that

certain aspects of the speci�cation are not implemented in the prototype even though they

would be provided in the generated construct. The Prototype View, shown in Figure 4a,

allows the user to instantaneously see the results of a language class speci�cation, including

the inheritance of properties de�ned in base class speci�cations, prior to code generation.

For the case of the BooleanCircuit example one can prototype all but the application of the

boolean operations on the input to a Gate and the speci�cation of the legal tail and head pairs

of the Connection relation. The ability to prototype an evolving speci�cation considerably

shortens the cycle of speci�cation, realization and re�nement of a visual language.

Alternate Views Figure 6 shows the set of alternate views that complete the majority of

the BooleanCircuit speci�cation. Figure 6a shows the Gfx View for the Gate class. This view

allows for the speci�cation of arbitrarily complex graphical representations for an element.

The Gfx speci�cation for the Gate class consists of a BitmapGfx to de�ne the basic image

and a TextGfx to represent the state of a gate. Figure 6b shows the Location Constraint View

for the Connection speci�cation. This speci�es that the tail point of a Connection relation is

equal to the east point (i.e., right middle) of the tail element of the relation. Using the Check

Tl/Hd View, shown in Figure 6c, one can visually de�ne the legal tail/head elements of a

relation. The speci�cation shown de�nes that the tail of a Connection relation can only be

a BaseElement and the head can only be a Gate. Figure 6c shows the Attribute View for the

BaseElement class. The Attribute View allows for the speci�cation of the attributes for the

language class. GrandView supports other views (not shown) that allow for the speci�cation

of menu entries, attribute mappings within relations, attribute mappings between structural

and visual elements, event propagations within relations and de�ning groups of connected

elements. One can also de�ne the default creation of relations between elements based on

element type and the spatial relationships (e.g., contains, under) between the elements.

8



4 Related Work

In this section we limit our discussion to those systems that provide speci�c support for the

development of visual language applications.

Unidraw [12] is a framework that provides very general support for a wide variety of

visually oriented applications (i.e., graphical editors). The drawback is the amount of coding

required to realize an application, Unidraw does not provide the speci�c support needed for

rapid application construction.

Extensible graph editors such as Edge [8] and T/GE [3] provide support for a narrow

domain of languages and interfaces. Systems such as these typically have a set of prede�ned

language constructs (e.g., node, edge and graph) that provide some degree of basic func-

tionality. Our work falls into this general category of systems. The distinguishing feature of

Escalante is the size and complexity of the domain which it is applicable to and the level of

functionality o�ered to a system developer. Escalante provides a high level of support for a

much wider range of visual languages and applications than the systems under discussion.

The picture parsing approach, as exempli�ed by the the Palette [2] system, involves the

use of modi�ed graphical editors as the means to specify a visual program. The image

that is created within the editor is parsed, using a picture layout grammar, to derive the

actual language constructs. This approach enables the rapid development of applications

without the overhead of interface creation. The drawback to the approach is that there is

limited domain knowledge within the interface. The interface is based on a set of graphical

constructs, not language constructs. The range of functionality within applications is limited.

The AgentSheets system [9] is used to create applications for visual languages that are

composed of grid based, communicating agents. AgentSheets is not a general purpose toolkit

for visual language application development. Rather, its focus is on the creation and explo-

ration of this particular language paradigm. Escalante has been used to create applications

based on this language paradigm (e.g., Figure 3c).

VAMPIRE [4] is an environment that supports the construction of iconic programming

systems with the particular focus on the semantics (i.e., execution) of iconic programs. The

de�nition of the semantics is accomplished by specifying attributed graphical rules that

de�ne transformations on the visual program. The emphasis of VAMPIRE is on language

semantics not on general user interface construction. Escalante does not provide explicit

support for de�ning the execution of visual languages.

5 Experiences

Escalante has been under development for approximately two years and consists of approxi-

mately 36,000 lines of C++ (including GrandView). Escalante is built using ET++ [13], an

application framework for user interface development.

Escalante has been used to create a number of visual language applications including the

screen snapshots shown in this paper. Other systems include a Petri net editor, a data
ow

graph editor that supports compiler optimization research, a mockup for a commercial visual

9



parallel programming environment and various work
ow systems (i.e., o�ce automation

systems). Escalante has also been used to construct an application that simulates constant

acceleration forces acting on moving bodies. These systems have been built by both the

developers of Escalante as well as other, less experienced, users. However, we cannot draw

accurate conclusions concerning Escalante based on the experiences of other users. These

users worked with an early version of Escalante (with minimal documentation) and had little

or no previous experience with visual languages or user interface development.

We now describe a set of applications built using Escalante. Each of these applications

was created by the �rst author and are used to illustrate the variety of applications one can

construct using Escalante. In this discussion we give estimates of the application development

e�ort in terms of the overall time, the number of generated classes and the amount of manual

programming required to implement the application. While these estimates cannot give a

full and complete measure of the ease (or di�culty) of creating applications with Escalante

they indicate that Escalante can facilitate the rapid construction of complex applications.

5.1 BooleanCircuit

The majority of the BooleanCircuit application of Figure 1 was created from the speci�-

cations shown in Figures 4 and 6. Approximately 30 lines of code had to be written to

implement the application of the boolean functions (i.e., and, or and not) to the input values

of a Gate. All other functionality (e.g., representation, value propagation) was achieved

through the code generated from the Grand speci�cation.

5.2 Multiple Representation

Figure 2 is a simple example of a multiple representation application. Each of the graphs

shown in the �gure are part of the same application. Adding elements to a graph in one

window causes corresponding elements to be added to the graphs in the other windows. This

application was constructed in less than a day with less than 30 lines of manual coding. The

generated language module consists of 22 classes.

5.3 DFlow

The DFlow language in Figure 3a allows one to de�ne computations by constructing data
ow

graphs. Values can be directly manipulated using input �elds, sliders, buttons, etc. These

values are propagated along relations and can be mathematically combined (e.g., added,

divided) by the ComplexValue element. This application was built in less than one half a

day and consists of nine generated language classes combined with 60 lines of manually

written code that implements the mathematical combination of values by the ComplexValue

element.

10



5.4 Turing Machine

Figure 3b shows a Turing Machine visual language. This language allows the user to con-

struct and simulate a Turing Machine. The rules of the Turing Machine are de�ned by

adding Rule elements to the table shown at the top of the �gure. This is accomplished

through a single menu command. Rules govern the state, input and output of the Turing

Machine. During simulation the Head element searches for a Rule that matches its state and

writes new values to itself and the Tape element it is above. It then moves itself according

to the Rule. This application was built in less than one day with approximately 100 lines of

code involved to implement the simulation of the Turing Machine.

5.5 Waterworks

The Waterworks example, shown in Figure 3c, is an application for constructing dynamic

water systems. A Water element has two forms - Drop and Vapor. A Drop falls until

encountering some object. If it is possible the Drop enters the object, else the Drop undergoes

a phase change and turns to Vapor. Vapor behaves likes a Drop except it rises. Drops

are produced by Faucets and Vapor is produced by Kettles. The rate at which Water is

produced by Faucets and Kettles can be changed. Pipes accept Drops and carry up to a

certain capacity. On reaching capacity Water backs up in a Pipe. The amount of Water in a

Pipe is re
ected by the color of the Pipe. This application was built in two days and required

approximately 300 lines of code to implement the water 
ow and movement behavior.

5.6 GrandView

The GrandView environment has been built using Escalante (and itself) in a bootstrapped

fashion with one development iteration being used to construct the next iteration. This

development e�ort occurred over a span of nine months. The generated language module of

GrandView consists of 75 classes comprising 8000 lines of code. Another 5000 lines of code

were written to implement the prototyping and code generation functionality of GrandView.

6 Conclusion

Visual language applications are complex and dynamic systems. Creating an environment

to support building these systems requires addressing a wide variety of issues concerning

visual languages and applications. Escalante is applicable to a broad range of applications

and provides a high degree of support for constructing those applications. The language

speci�cation environment GrandView overcomes many of the di�culties that arise in using

a large software environment such as Escalante. GrandView allows the developer to focus

on the important aspects of the target language and abstracts away many of the details

that can interfere with the development process. Providing a functionally rich development

11



environment and an amenable way in which to use the environment allows for the rapid

construction of complex, highly functional applications.

7 Acknowledgments

Escalante is a realization of the Ph.D. research conducted by author McWhirter; he has been

supported in this work by a grant from US West Advanced Technologies. Nutt has been

supported by Bull Worldwide Information Systems and US West Advanced Technologies on

this work.

References

[1] E. P. Glinert, editor. Visual Programming Environments: Paradigms and Systems.

IEEE Computer Society Press, Los Alamitos, CA, 1990.

[2] E. J. Golin, S. Danz, S. Larison, and D. Miller-Karlow. Palette: An extensible visual

editor. In Proceedings of the 1992 ACM/SIGAPP Symposium an Applied Computing,

pages 1208{1216, March 1992.

[3] A. Karrer and W. Scacchi. Requirements for an extensible object-oriented tree/graph

editor. In Proceedings of the ACM SIGGRAPH Symposium on User Interface Systems

and Technology, pages 84{91, October 1990.

[4] D. W. McIntyre and E. P. Glinert. Visual tools for generating iconic programming

enviroments. In Proceedings of the IEEE 1992 Workshop On Visual Languages, VL'92,

pages 162{168, 1992.

[5] J. D. McWhirter, Z. K. F. Eckert, and G. J. Nutt. Building visual language applications

with Escalante. Technical Report CU-CS-655-93, Dept. of Computer Science, University

of Colorado, Boulder, Boulder, Colorado, 80309-0430, September 1993.

[6] Je�rey D. McWhirter and Gary J. Nutt. A characterization framework for visual lan-

guages. In Proceedings of the IEEE 1992 Workshop On Visual Languages, VL'92, pages

246{248, 1992.

[7] Brad A. Meyers and Mary Beth Rosson. Survey on user interface programming. In CHI

'92: Human Factors in Computing Systems, pages 195{202, May 1992.

[8] Francis J. Newberry and Walter F. Tichy. EDGE: An extendible graph editor.

Software|Practice and Experience, 20:63{88, June 1990.

[9] Alex Repenning. Agentsheets: A Tool for Building Domain-Oriented Dynamic Visual

Environments. PhD thesis, University of Colorado, Department of Computer Science,

Boulder, Colorado, 1993.

12



[10] Piyawadee Noi Sukaviriya, James D. Foley, and Todd Gri�th. A second generation user

interface design environment: The model and the runtime architecture. In INTERCHI

'93: Human Factors in Computing Systems, pages 375{382, April 1993.

[11] Pedro Szekely, Ping Luo, and Robert Neches. Beyond interface builders: Model-based

interface tools. In INTERCHI '93: Human Factors in Computing Systems, pages 383{

390, April 1993.

[12] John M. Vlissides and Mark A. Linton. Unidraw: A framework for building domain-

speci�c graphical editors. ACM Transactions on Information Systems, 8:237{268, July

1990.

[13] A. Weinand, E. Gamma, and R. Marty. ET++ - an object oriented application frame-

work in C++. In OOPSLA'88 Conference Proceedings, September 1988.

13


